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Abstract

The Beverton–Holt recruitment model can be derived from arguments about evolution of life history traits
related to foraging and predation risk, along with spatially localized and temporarily competitive relationships in
the habitats where juvenile fish forage and face predation risk while foraging. This derivation explicitly represents
two key biotic factors, food supply (I) and predator abundance (R), which appear as a risk ratio (R/I) that facilitates
modelling of changes in trophic circumstances and analysis of historical data. The same general recruitment
relationship is expected whether the juvenile life history is simple or involves a complex sequence of stanzas; in
the complex case, the Beverton–Holt parameters represent weighted averages or integrals of risk ratios over the
stanzas. The relationship should also apply in settings where there is complex, mesoscale variation in habitat and
predation risk, provided that animals sense this variation and move about so as to achieve similar survival at all
mesoscale rearing sites. The model predicts that changes in food and predation risk can be amplified violently in
settings where juvenile survival rate is low, producing large changes in recruitment rates over time.
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Introduction

There are two great questions in the study of fish
recruitment: (1) what causes high variation, and (2)
why is recruitment most often nearly independent
of egg or larval production over wide ranges of
parental abundance? A simplistic approach to these
questions has been to assume that recruitment is
‘limited’ not by egg production but by environmental
factors, and that variation is driven by changes in
such factors over time. Two main criticisms of this
approach have been that the term limitation is danger-
ously vague, and that correlations between recruitment
and environmental indices are notoriously prone to
breaking down soon after they are published (Drink-
water and Myers, 1987; Walters and Collie, 1988;
Walters and Juanes, 1993). If average recruitment does
not change with parental abundance, there must be
powerful compensatory changes in larval or juvenile
survival rates to result in similar recruitments when
egg production is reduced, and we should not be
surprised if the processes causing large compensatory
changes are also somehow responsible for causing the
variability in recruitment. Perhaps more important,
now that we are starting to acquire longer time series
of recruitment estimates, we are starting to see more
examples of strong, persistent changes in survival rates
that cannot be adequately explained on the basis of
any obvious changes in environmental regimes. For
example, both marine survival rates of coho salmon
(Oncorhynchus kisutch) in southern British Columbia
(Coronado and Hilborn, 1997) and recruitment per
spawner in some Atlantic salmon (Salmo salar) stocks
from New Brunswick have shown essentially linear
declining trends since the mid to late 1980s (Friedland
et al., 1993). In these cases, there have been substan-
tial changes in oceanographic indices like temperature,
but not in the form of simple trends that correspond
well with the survival trends (Beamish et al., 1997).
Abrupt changes in physical regimes are common, but
survival patterns often do not show corresponding
abrupt shifts or persistent change following shifts.
At least in such cases, we might be wiser to seek
explanations in biotic factors such as predator abun-
dance and cannibalism, the dynamics of which are
likely to involve progressive change, and hence trends
in impact (Walters and Juanes, 1993).

Three alternative explanations are possible for the
general failure to relate environmental factors clearly
to persistent changes in survival rates: (1) other abiotic
factors may have caused the persistent changes in

survival rates; (2) biotic factors may have caused the
persistent changes; or (3) a combination of abiotic and
biotic factors may be responsible for the changes. In
this paper, we develop a model that assumes that biotic
factors, namely predation and food supply, influenced
by environmental factors, are the dominant causes of
persistent survival rate changes. This argument is not
new; for example Friedland et al. (1993) concluded
that a significant proportion of variation in North
American Atlantic salmon recruitment is driven by
changes in marine winter habitat area affecting both
intraspecific competition for space and food resources,
and predation of post-smolts.

The Beverton and Holt (1957) recruitment model
has provided a useful description of cases in which
recruitment is nearly independent of parental stock
size over a wide range of egg depositions. It was
derived by assuming that juvenile mortality rate varies
linearly with juvenile density. We have not taken
this assumption very seriously, preferring to view the
time integral equation for final recruitment mainly as
an empirical model with desirable shape properties
(recruitment falling toward zero at zero stock size, but
independent of stock size for higher stock sizes) for
harvest policy analysis. Hints that there may in fact be
good reasons for mortality rates to vary linearly with
juvenile densities have arisen from evolutionary argu-
ments about how juvenile fish should respond to food
competition and predation risk (Walters and Juanes,
1993). Such arguments have not led specifically to
the Beverton–Holt model, nor have they attempted to
account explicitly for temporal variation in the main
biotic factors that could influence juvenile survival
(food availability and predation risk). There is also
empirical evidence that we should look specifically
at juvenile (as opposed to egg or larval) stages for
explanation of density-dependent effects on recruit-
ment (Lockwood, 1980; Myers and Cadigan, 1993).

Here we show that Beverton–Holt models with
explicit representation of effects of changes in food
supply and predation risk can be derived from simple
arguments about how juvenile fishes compete and
adjust behaviour to changes in opportunities and risks.
Such models predict that very large changes in recruit-
ment and survival rates can, and should, accom-
pany relatively small changes in food availability and
predator abundance. If the arguments presented below
are correct, even in broad outline, we have very likely
been looking and measuring at the wrong scales and in
the wrong places for causes of recruitment variation.
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Derivation of the Beverton–Holt model from
risk-sensitive foraging arguments

The following analysis is based on the representation
of mortality factors at three time scales (Figure 1):
(1) very fast variation on scales of hours to days in
behaviour of juvenile fish faced with predation risk
while foraging, with the assumptions that competition
for food can be locally intense and that most predation
mortality is likely to occur while juveniles are actively
foraging or dispersing to seek improved foraging sites;
(2) cumulative mortality on time scales of single and
multiple life history stanzas within the first year or two
of life, with food and predation risk treated as constant
(or noisy but with no temporal trend) within each
seasonal stanza; and (3) interannual (or among-cohort)
variation caused by longer-term dynamic changes in
food and predator abundances. This section shows
how linear variation in mortality rates with juvenile
density could arise within single life history stanzas.

A basic implication of risk-restricted foraging
behaviour

Walters and Juanes (1993) pointed out that juvenile
fishes generally forage in highly restricted spatial
‘arenas’ in close proximity to refuges from predation,
and that competition for food can be intense within
such arenas even when total food abundance appears
unlimited when measured at larger spatial scales. They
pointed out that a remarkable variety of physical and
behavioural circumstances lead to the arena foraging
structure on small space-time scales, ranging from
juveniles hiding in littoral shallows to juveniles hiding
behind their neighbours in dense shoals. They noted
that food densityft within such foraging arenas can be
dominated on small scales by exchange and foraging
processes, withft varying rapidly according to a
differential equation of the form:

dft/dt = kIt −mft − (a/A)Ntft . (1)

HereIt is overall food density in the water surrounding
the foraging arenas, delivered to the foraging arenas
through processes like prey and water movement at
rateskIt ; mft represents loss of prey from foraging
arenas owing to the same processes (and others such as
insect emergence); and (a/A) is a, the area or volume
swept per foraging juvenileNt per time in the arena
(which may or may not involve active movement by
the juvenile), divided byA, the arena area or volume.

Figure 1. Analysis of recruitment relationships should involve at
least three space-time scales: (1) the very fine scales at which
juveniles forage and face predation risk; (2) larger scales at which
we observe net recruitment rates; and (3) long-term population
dynamics scales over which the recruitment relationship has an
impact on population change. The extended Beverton–Holt model
derived in this paper provides a convenient way to bridge from the
first to second of these scales.

High values of the small-scale exchange and
feeding parametersk, m, and (a/A) imply that ft will
quickly move to and remain near a moving equilibrium
(with It and Nt ) defined by setting the derivative in
Equation 1 to zero:

ft = kIt / [m+ (a/A)Nt ]. (2)

This proposition, that there should be a strong inverse
relationship between available food densityft and
juvenile densityNt even when total food supplyIt
appears unlimited, is critical to the arguments that
follow. Note that the arena parametersk, mand (a/A)
are defined by a very complex interaction of habitat
structure, behavioural properties of food organisms,
and how juveniles perceive severity of predation risk
in choice of arena sizesA. Within any large juvenile
rearing area, the ‘arena’ is not a single place but rather
a complex spatial set of foraging sites-times.

It is not critical to the arguments that follow
whether we can measure (or even define precisely)
the parameters of Equation 2 in the field. Perhaps
the best way to think about foraging arenas is as
what philosophers of science call “theoretical objects”
(Kuhn, 1962), which are things that we cannot define
completely, or measure directly, but help us to make
useful predictions when we pretend they exist (the
Bohr atom is an obvious example).
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Temporal variation in mortality rate for animals
selected to seek minimum growth trajectories

The next step in the derivation is to suppose that
juvenile fish adjust the proportion of timepf that
they spend in foraging areas so as to try and achieve
per capita food consumption ratesc∗, where natural
selection has adjusted these feeding rate goals so that
the fish will achieve a growth trajectory that is in
some sense optimal. Here optimal is used in an evolu-
tionary sense, with respect to the balance of growth
versus predation risk, and with respect to potentially
harsh constraints such as the need to reach some crit-
ical minimum size by the end of a growth stanza in
order to be able to overwinter successfully or minimize
some size-dependent risk later in life (review, Walters
and Juanes, 1993). Again, for the arguments that
follow, we need not be precise in predicting what
c∗ should be; it matters only that animals do in fact
make adjustments in foraging time when faced with
changes in food availability driven by abiotic factors
(It , k in Equation 2) and competition (Nt in Equation
2). Further, the arguments will hold if there is consid-
erable individual variation in response, as predicted
for example by dynamic programming models that
show how individuals with large size or energy storage
should be less prone to make risky foraging decisions
(have lower pf ) than individuals that have fallen
behind an overall best growth trajectory (Mangel and
Clark, 1988).

If animals do attempt to achieve consumption rate
c∗, whether due simply to hunger or because of long-
term natural selection, they need on average to adjust
pf so that

c∗ = apf ft (3)

where againa is the volume or area of arena swept
per time foraging andft is arena food density. In
the presence of competitor abundanceNt , combining
Equations 2 and 3 implies the relationship

c∗ = apf kIt / [m+ (a/A)Nt ] (4)

which implies thatpf should be adjusted so that

pf = [m+ (a/A)Nt ]c∗ / (akIt ). (5)

That is, animals seeking to achieve feeding rate
c∗ should vary the mean proportion of time spent
foraging linearly with density of competitors (Nt ), and
in inverse proportion to overall food abundance as
measured bykIt .

An obvious next step is to suggest that instan-
taneous mortality rate due to predation is directly
proportional to time spent foraging, i.e.

dNt/dt = −ZtNt = −RtpfNt (6)

whereRt is the instantaneous mortality risk per time
spent foraging. Here we assume that when juven-
iles are not feeding, they minimize predation risk by
hiding, remaining stationary or by schooling tightly.
Substituting Equation 5 into this model results in a
differential equation for cumulative impact onNt :

dNt/dt = −Rt [m+ (a/A)Nt ]c∗ / (akIt )Nt . (7)

Over time scales short enough to treatc∗, Rt , It and
the foraging parametersk, m, (a/A) as constant, we can
express Equation 7 in terms of aggregated parameters
α1 andα2 as

dNt/dt = −α1Nt − α2N
2
t (8)

where:
α1 = [Rt/It ]c∗m/ (ak) (9a)

and
α2 = α1a / (mA). (9b)

That is, instantaneous juvenile mortality rate should
vary linearly with Nt , having an intercept or base
rateα1 and a compensatory slopeα2. Each of these
mortality parameters should vary over longer time
scales (multiple life history ‘stanzas’, years) in propor-
tion to the risk ratioRt /It , where againRt is instan-
taneous predation risk per time foraging andIt is
overall food abundance. The base mortality rateα1
should be higher in environments with more predators
or less food, where food is delivered to foraging arenas
more slowly (k small), and/or where animals seek
higher consumption ratesc∗ owing to factors such as
increased metabolism at higher temperatures. Interest-
ingly, the compensation parametersα2 should vary
in the same way, but should be lower in situations
where foraging arena size (A) is larger. Beverton and
Holt (1957) suggested in deriving the original model
that predation effects should be concentrated in the
α1 parameter, whereas the above formulation suggests
that both the rate parameters should vary withRt .

The single-stanza Beverton–Holt Model

Solving differential Equation 8 forNt over any life
history stanzas of durationTs short enough so thatα1
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andα2 are relatively constant, we immediately obtain
the familiar Beverton–Holt input–output relationship

NTs = β1N0 / (1+ β2N0) (10)

where the slope and carrying capacity parameteersβ1
andβ2 are defined from the rate parameters by:

β1 = exp(−α1Ts) (11a)

β2 = (α2/α1)(1− β1) = a / (mA)(1− β1) (11b)

in whichNTs is the output number of recruits surviving
the stanza andN0 is the input number of juveniles
entering it.

As α1 and α2 in Equations 11a and 11b are
predicted as a function of factors controlled by
small-scale interactions (Equations 9a and 9b), the
Beverton–Holt parameters are therefore defined by
these same small-scale interactions and vary with
changes in the risk/food ratioRt /It (Figure 2). Equa-
tion 11a points out a robust feature of the derivation:
we obtain basically the same prediction about recruit-
ment by assuming either thatpf is adjusted to achieve
c∗ in fixed timeTs , or thatpf stays constant so thatc∗
varies so as to cause a longer timeTs needed to reach
some size that defines the end of the stanza (only the
productc∗Ts need be constant).

Surprisingly, the Beverton–Holt model can be
derived by reversing the basic assumption that animals
vary pf so as to try and achieve rationc∗ over a fixed
stanza periodT, and assuming instead that animals
feed for a fixed fractionpo of the time while allowing
growth rate to vary so the total timeT needed to reach
some critical total size or cumulative consumption
C∗ also varies. Under this density-dependent growth
model, instantaneous mortality rateZ = Rtpo due to
feeding should be constant (cohorts should die off at
the same rate given similar predation riskRt , whether
their initial density is high or low), andT should vary
from year to year with changes in initial abundance
N0. The Beverton–Holt model for numbers reaching
total consumptionC∗ over a stanza is then given by
(Appendix 1):

NT = N0e
−ZT

= exp(−α1)N0 / [1+ α2(1− exp(−α1))N0]
whereα1 = C∗Rtm/Itka andα2 = a/(mA). That is, in
terms of risk ratio (R/I) and habitat size (A) effects,
it does not really matter whether we view animals as
varyingp so as to achieve constant rationc∗, or having
to live with variable total timeT needed to reach a

critical total food consumptionC∗ at which they can
undertake some ontogenetic shift or reach a size large
enough for size-selective mortality rate to decrease
substantially (Figure 3). In the field, situations where
p is fixed are probably not uncommon, as a result of
prey and predator behaviour factors such as diurnally
restricted emergence times of insects.

For high initial juvenile inputN0, Equation 10
predicts that recruitmentNTs should be essentially
independent ofN0, at a limiting value

N
(limit )
Ts

= β1/β2 = (mA/a)exp(−α1Ts) /

[1− exp(−α1Ts)]. (12)

That is, asymptotic recruitment from any stanza
should be proportional to habitat sizeA and exponen-
tially decreasing in the risk ratioRt /It . Equation 12 is
used below to evaluate sensitivity ofNTs to changes in
Rt /It ; this sensitivity should be high in any case where
there is large absolute change inα1 with change in the
risk ratio, i.e. when the maximum total survival rate
exp(−α1Ts) through the stanza is low. Note also that
if maximum (absent competitive effects) total survival
exp(−α1Ts ) through the stanza is low, Equation 12 is
well approximated just by (mA/a)exp(−αTs).

Representing complex ontogenetic changes in risks
and opportunities

Suppose we think of recruitments that we finally
measure as the result of a sequence of life history
stanzas, each described by a Beverton–Holt function
of the Equation 10 form but with different parameter
values owing to changes in foraging opportunities,
predation risks, and environmental factors over time
and as juveniles grow. It is easily shown (by substi-
tuting output from each stanza into the Beverton–Holt
equation for the next stanza) that any such sequence
of input–output relationships is itself a Beverton–Holt
function, i.e. Nf = α∗1N0 / (1 + β∗2N0), whereNf is
final recruitment andN0 is the number of fish entering
the first stanza (Beverton and Holt, 1957, pp. 48–49).
For ann-stanza life history, the overall recruitment
parametersβ∗1 andβ∗2 are functions of the stanza-scale
parameters:

β∗1 = β(1)1 β
(2)
1 . . . β

(n)
1 (12a)

β∗2 = β(1)2 + β(1)1 β
(2)
2 + β(1)1 β

(2)
1 β

(3)
2 + . . . (12b)
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Figure 2. Summary of the effects of foraging arena model parameters on the shape of the Beverton–Holt relationship.

where the superscripts in parentheses denote stanzas.
That is, the overall recruitment slope parameterβ∗1 is
just the product of the slope parameters for the indi-
vidual stanzas, andβ∗2 is a survival-weighted (β(i)1
are survival rates) sum of the stanza compensation
parameters. This peculiar algebraic feature of the
Beverton–Holt equation is very likely a key reason
why the relationship keeps appearing in such a rich
variety of data sets, where we believe that there
are radically different patterns of life history stanzas,
feeding ontogenies, and predation risks.

Consider what happens if we progressively divide
the early life history into more and more, shorter

stanzas, of progressively shorter durationsTs . Then
in the limit as theseTs durations approach 0 (become
differentials dt), we can think of the by-stanza foraging
and risk parametersα(s)1 α

(s)
2 (or theβs) as continu-

ously changing functions of size and age, i.e. to think
of s as a continuous time variable and the parameters
as functions of this variable. The sum of terms in the
exponent ofβ∗1 then becomes just an integral, as does
the sum of terms definingβ∗2. These integrals may
be difficult to calculate numerically for any particular
choice of functional representation for how the para-
meters vary withs, but that is not the point: the basic
Beverton–Holt structure will still be preserved. This
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Figure 3. The same Beverton–Holt relationship between abundance
entering and leaving a life history stanza is predicted whether
animals vary foraging times within the stanza, so as to maintain
constant growth rates while accepting variable mortality rate with
foraging time, or instead adopt fixed foraging time and hence accept
variable total time required to pass through the stanza. Relationships
in (b) under these two foraging time assumptions are shown for
situations of both low and high abundance as shown in (a).

same mathematical result can be obtained by treating
α1, α2 as continuous functions of time in the first place
when integrating Equation 8;β∗1 is exp[− ∫ α1(t)],
andα∗2 is a convolution integral ofα2(t) weighted by
exp[− ∫ α1(t)] terms.

There is one obvious condition under which the
equations defined above could predict a dome-shaped
relationship between final recruitmentNf and initial
juvenile numbersN0. That is where the risk ratioRs /Is
(now thinking of this ratio as varying with stanza s
rather than timet) is dependent on the number of
older animals in the population, soRs is some func-
tion of the same older juvenile and/or adult abundance
that causes variation inN0. However, the competi-

tion and risk-sensitive foraging arguments leading to
the basic Beverton–Holt formulation imply that any
such dome-shaped relationships should often be much
less pronounced than predicted by the Ricker model,
except perhaps in circumstances where juveniles must
spend a very high proportion of time foraging and at
risk to cannibalism for some reason.

Representing mesoscale variation in habitat
structure and risk

The derivation above is based on thinking about
habitant structure, food competition, and preda-
tion risk at only two spatial scales: a large rearing
area, with microscale foraging arenas distributed in
some reticulated structure over that area. In many
cases this conceptual picture could be misleading.
Obvious examples are (1) juvenile fish distributed
along a large river that has strong spatial gradients in
productivity and predator populations, and (2) juvenile
fish dispersing into potentially very large rearing
areas from restricted spawning/larval settlement sites,
e.g. into estuarine and coastal areas from freshwater
spawning ares. For the following analysis, the poten-
tial overall rearing area is viewed as a collection
of subareas (rearing reaches) each containing arena
substructure but differing in terms of predator popu-
lations and food supplies (e.g. river reaches, coastal
bands progressively further from spawning areas).
Should we still expect a relatively simple Beverton–
Holt relationship in such cases? If so, should meso-
scale spatial patterns in juvenile density be clearly
related to variation in risk ratios (Rt /It ) and relative
area of foraging arenas (A)?

Very interesting answers to these questions are
obtained if we assume that natural selection has acted
on dispersal behaviours (of juveniles, and of adults
in settings where adult site selection restricts juvenile
movement opportunity) to make these behaviours
sensitive to risk ratios in the same ways assumed
in the basic derivation above. If dispersal behav-
iour is sensitive to opportunity and risk, animals
should redistribute themselves so that no mesoscale
rearing area ends up standing out as much better
(or worse) than surrounding areas. That is, better
areas should accumulate animals, and poorer areas
should lose animals, until dispersing individuals see
no particular advantage to any area they encounter or
test (MacCall, 1990). If we do see high differential
survival/growth rates among areas, such differences
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should be persistent only if juveniles do not have
enough time to seek out the better areas or if the
dispersal search process has extreme cost (energetics
or mortality risk). The following subsections examine
three situations where we can make specific predic-
tions about overall recruitment and spatial distribution
patterns by using the idea that dispersal tends to
equalize fitness (i.e. survival) over space.

Juveniles move freely among mesoscale rearing areas
with negligible dispersal cost

Suppose there are a set of habitat unitsh = 1 . . . H that
juveniles can freely test, with each such unit having
predation/food/arena size parametersRh, Ih, Ah that
do not change rapidly over the stanza(s) of highest
juvenile mortality.Habitat unitsare spatially distinct
areas to which juveniles can disperse. However, these
units do not have to be morphologically different (e.g.
littoral vs. pelagic zones in a lake). If juveniles seek a
particular target food consumption ratec∗ (as above)
and seek to minimize mortality risk to achieve this
rate, they should move around so that instantaneous
mortality ratesZh = α1h + α2h Nh are the same for all
h, i.e.Zh = Z. That is, each rearing unit should satisfy
the relationshipZ = α1h + α2h Nh, implying juveniles
distributed asNh = (Z− α1h)/α2h. This predication can
be reexpressed using the definitions ofα (Equation 9)
as:

Nh = [ZkAhIh / (c∗Rh)] − (mAh/a). (13)

If the habitat unitsh have (or are defined so as to
have) similarAh, this prediction reduces to the linear
relationship:

Nh = {[(ZkA/c∗)Ih] /Rh} − (mA/a) (14)

(Nh should be zero in habitat units where this equation
predicts negative numbers.)

That is, we should see linear variation in juvenile
densities over habitats h of similar arena size (A),
with variation in the food/predation ratioIh/Rh. The
slope of this relationship should decrease over time
as total mortality rateZ decreases with decreasing
juvenile density, assuming that densities are not main-
tained by schooling or other antipredator behaviours.
Further, spatial evening in mortality risk (Z) implies
that total juvenile numbers summed over habitats h
should decline according to a weighted Beverton–
Holt relationship dN/dt = −6hα1hNh − 6hα2hN2

h =
−ᾱ1N − ᾱ2N2, where theᾱ are weighted averages

of habitat-specific values (eachα1h in ᾱ1 weighted by
Nh/N, eachᾱ2h in ᾱ2 weighted byN2

h/N
2.

Adults select mesoscale areas, then juveniles are
restricted to the area of birth

In this case, suppose juveniles are restricted to the
habitath where they are born, delivered, or tended
by adults, and that adult densitiesNAh are adjusted
through adult habitat site selection processes or local
adult population dynamics so that no habitat ends up
standing out as a better site for producing young. From
an adult perspective, the quality of each h is meas-
ured by net per-capita recruitment performanceSh =
NTs /NA where NTs is the net recruitment predicted
from Equation 10 so as to include Beverton–Holt
effects of competition among the juveniles (and preda-
tion risk). Equalization of performance among sites
(or local population growth to an equilibirum where
recruitment balances adult mortality, assuming similar
adult mortality in all habitats) implies similar values
of NTs /NA for all habitats, which can be expressed in
terms of Equation 10 as:

Sh = S = β1hF / (1+ β2hFNAh) (15)

where adult fecundity isF (soN0 = FNA) and theβ1h,
β2h are given by Equation 11 with local predation and
food parametersRh, Ih used in theα calculation for
each h. Solving Euation 15 for adult distributionNAh
results in the prediction thatNAh should vary linearly
with the β1h, β2h parameters, asNAh = [β1h(F/S) −
1] / (β2hF). This prediction can be expressed in terms
of a function that varies exponentially with risk ratio
Rh/Ih, as:

NAh = (mA/aS)exp(−α1hTs) /

[1− exp(−α1hTs)−mA/(aF)] (16)

(with no adults predicted to use habitats where this
equation evaluates to less than 0).

The adult relationship (Equation 16) is not as tidy
as the linear juvenile pattern of Equation 14, but
makes the same qualitative prediction that there should
be a strong positive relationship betweenNAh and
the inverse risk ratioIt /Rt (becauseα1h is propor-
tional Rt /It ). It again predicts an overall Beverton–
Holt relationship for the summed relationships over
habitats (total recruits vs.6hNAh) but with compli-
cated weightings for the local recruitment contribu-
tions.
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Juveniles disperse into a large habitat from restricted
spawning/settlement site

Suppose we now think of the mesoscale habitat index
h as a continuous variable representing distance from
a spawning or larval settlement site, and treat juvenile
densitiesNht as a continuous function ofh and time
t during the recruitment process. Assume that micro-
scale arena structure and behavioural responses result
also in continuous variation in mortality rateZht with
h and t, where as above we would expectZh = α1h
+ α2hNht . But now suppose that juveniles residing at
point h can expect to suffer mortality riskDhdh for
dispersing a distance dh across the habitat field. In
this setting, it only makes evolutionary sense for an
animal to move to positionh + dh if Zh+dh is less
thanDhdh, i.e. if the mortality cost of moving is less
than the expected gain through reduced mortality risk
at a new residence location. Animals should be indif-
ferent to moving at break-even situations whereZh
− Zh+dh = Dhdh because there will be no survival
advantage to moving when the costs of moving are
considered. Ifα1 andα2 do not change rapidly with
h, this break-even condition can be expressed asDh
= −α2∂Nh/∂h, implying that animals should disperse
along the habitat variableh unlessα2 (proportional
to the local risk ratioRh/Ih) is small and/or there is
a strong spatial gradient in juvenile density (∂Nh/∂h
large negative).

So if juveniles can somehow detect spatial density
gradients∂Nh/∂h via local movement forays or evolu-
tion of genetic expectations based on local risk condi-
tions Zh, the gradient break-even condition results
in three main qualitative predictions. (1) Dispersal
should be most rapid (or common) near the start of
the process, when juveniles are most concentrated and
the gradient∂Nh/∂h is strongest. (2) Dispersal rates
should be much lower later on, when density gradients
(and odds of finding a better site) are much weaker
(lower). (3) If riskDhdh per move is high, the juvenile
distribution should show a relatively sharp boundary,
with this boundary perhaps moving between years
with changes in initial juvenile abundanceN0. As
in the previous cases, the general Beverton–Holt
response pattern should occur, but with parameter
values that are complex spatial averages of local risk
ratios and dispersal risk.

Unfortunately, there is at least one very serious
weakness and lack of generality in this whole line
of argument: many kinds of animalsdefineforaging
arenas through shoaling behaviours, i.e. treat shoals of

conspecifics as their main hiding places (see Figure 1
in Walters and Juanes, 1993). To such species, gradi-
ents inNh can mean opportunities for reduced rather
than increased predation risk albeit with trade-offs in
terms of increased intraspecific competition. It is easy
to visualize how the competing effects ofNh might
be expressed in patterns like rapid initial dispersal
of juveniles from natal areas followed by consolida-
tion into shoals that then move over large areas, in
a sense then carrying their Beverton–Holt foraging
arena structure with them. But it may be difficult
or impossible to prove that such complex ontogenies
should result in the overall form of a Beverton–Holt
stock–recruitment relationship.

Sensitivity of recruitment rates to risk/food ratios:
amplification of biotic variation

An intuitive argument about longer-term (interannual)
recruitment variation might be that risk-sensitive
changes in foraging behaviour should dampen the
impacts on recruitment of changes in predator abun-
dance. The analysis above indicates that this intuition
is wrong. Theβ1 parameter (= exp(−α1Ts), where
α1 is proportional to the risk ratioRt /It ), or more
generallyβ∗1 for multiple stanzas, can be quite sensi-
tive to the risk ratioRt /It . The proportional effect of
β1 on recruitment should not be cancelled via theβ2
parameter because the dependence of this parameter
on the risk ratio is likely to be weak:β2 is propor-
tional to 1− exp(−α1Ts ), which is close to 1.0 if the
maximum survival rate exp(−α1Ts) is low. A further
intuitive argument for multistanza cases might be that
compensatory effects at a later stanza might ameliorate
or dampen high variation due to biotic factors in early
stanzas. This intuition is again likely to be wrong,
for the same reasons; note thatβ∗1 = exp(−6α(s)1 Ts ),

which is sensitive to changes inα(s)1 at all stages for

whichα(s)1 or Ts are large.
Consider situations where egg or larval inputN0 is

large enough for recruitment to be near the recruitment
N(limit )
Ts

predicted by Equation 12, i.e. for recruit-
ment to not increase with respect to changes inN0.
Assume further that the maximum survival rateS0
= exp(−α1Ts ) is relatively low, implying the instan-
taneous mortality rateZs = α1Ts = −ln(S0) is high;
this is the typical situation for juvenile fish. For lowS0,
Equation 12 behaves asN(limit )

Ts
≈ (mA/a)exp(−α1Ts ).

We can easily reparametrize the mortality rateZs so as
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to evaluate how it should vary with the risk ratioRt /It ,
by expressing this approximation as:

N
(limit )
Ts

≈ (mA/a)exp(−G0Ht) (17)

where the gain parameterG0 is defined as:

G0 = mc∗TsR0 / (akI0) (18)

andHt is the relative risk ratio for year (or cohort)t:

Ht = (Rt /R0) / (It / I0) (19)

measured relative to some base risk ratioR0/I0 that
has historically led to survival rateS0. Note thatG0
= −ln(S0) becauseH0 = 1.0. Now suppose we look at
relative recruitment rates for years (or cohorts)t, N(t)Ts ,

as ratios to theN(limit )
Ts

implied by S0. Using Equa-
tions 17 to 19, such relative recruitment rates can be
expressed simply as:

N
(t)
Ts
/N

(limit )
Ts

= exp[−G0(Ht − 1)] = S(1−Ht)0 . (20)

That is, recruitments ought to vary from year to year
relative to some base or average by amounts that are
greater if base mortality rateG0 = Z0 is high and/or if
the relative risk ratioHt is much different from 1.0.

Figure 4 shows just how big the effects of changes
in the relative risk ratioHt could be, for alternative
base survival ratesS0. If base survival rate were really
low, say 0.001, it would take only± 10% change in
Ht to cause± 50% changes in recruitment. At base
survival rate 0.1, it should take± 30% changes in
Ht to cause± 50% recruitment variation. That such
large effects could arise from relatively small changes
in trophic circumstances reminds us of the key point
made by Beyer (1989) and Ursin (1982), that the really
remarkable thing is not how much recruitment varies,
but rather why it varies so little. To avoid predicting
really massive changes in recruitment with changes
in risk ratiosHt in the Beverton–Holt model derived
above, we have to suppose either that the critical
stanza(s) whereHt applies are very short (soZs for
these stanza(s) is quite low), or that there are addi-
tional compensatory responses (such as changes in
foraging arena sizesA with Ht ) not recongized in the
basic model above.

Simplified parametrization for multispecies
assessments

The Beverton–Holt formulation above provides a
tempting starting point for multispecies modelling. It

Figure 4. Effect of changes in the relative risk ratioHt (predator
abundance / food abundance) on relative recruitment rate (rate in
year t divided by mean rate), for alternative values of maximum
total survival rateS0 through a limiting juvenile life stage.

reflects the widespread observation that recruitments
tend to be independent of parental abundance unless
that abundance is very low, it contains explicit terms
that link recruitment variation to food, predator abun-
dance, and habitat scale, and it is based in reasonable
assumptions about behavioural ecology at fine space-
time scales. And it seeks explanation for population
changes at those early life history stages that we
suspect to be most sensitive to interactions and envi-
ronmental changes. But as presented, it is grossly
overparametrized for most practical applications. This
section shows one fairly simple way to reparamet-
rize it so as to maintain the multispecies linkages
even when it is difficult or impossible to measure
relevant variables in commensurate units, to provide
a framework that is open to improvement as more
refined information becomes available about trophic
interactions and impacts of habitat change, and to
allow incorporation of basic hypotheses and results
from comparative studies about likely recruitment
responses to extreme circumstances (e.g. very low
spawning stock size). These are ambitious goals for
any model; the following results are intended to be a
starting point rahter than a definitive assertion about
how to best parametrize the model.

Assume we seek to make predictions ofrelative
abundancesNit over yearst for a set ofi = 1 . . .n
species or functional groups, with each species repre-
sented by Beverton–Holt recruitment at age 1. Assume
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we want to express age 1 recruitmentsNi1t (i for
species, 1 for age 1,t for time) as:

Ni1t = β1itFiNit / [1+ β ′2it (1− β1it )FiNit ] (21)

whereFi represent the mean age 1 + fecundity for
speciesi, β

′
2it = a/(mA) represents only effects of

changes in habitat size (Equation 11), and the recruit-
ment parametersβ vary over time in relation to
predation risk ratios and changes in habitat factors
like A. Ordinarily we would approach this problem
by first estimating all theNs on some commensurate
scale (often involving some very questionable assess-
ment assumptions), then use methods like Ecopath
(Christensen and Pauly, 1992; Polovina, 1984) and
multispecies virtual population analysis (MSVPA;
Sparre, 1991) to provide initial estimates of feeding
rates and mortality trophic flows from which we would
attempt to calculate juvenile mortality rates and risk
ratio components. Here it will be assumed that such
standardization is either impossible or highly ques-
tionable, and that theNit are measured in a variety of
disparate units, not necessarily even numerical abun-
dances (e.g.N representing aquatic insects might be
in g m−2 biomass unit,N for some small fish might
be expressed in beach seine catch rate unit, and trout
might be measured in numbers backcalculated using
VPA). Those who enjoy accounting models might
wish to replaceNit with a full age-structured model,
using sum of age-specific fecundities× numbers at
age in the recruitment function; this elaboration does
not change the basic approach at all.

Next suppose we define a set of baseline abun-
dance levelsNi0 that we believe on the basis of past
data (or propose as a working assessment hypothesis)
would be naturally sustainable, i.e. displayNit+1 ≈
Nit = Ni0 on average in the absence of habitat changes.
This is exactly the same as assuming the existence of
a natural unfished biomass or abundanceB0 in single-
species assessment. If speciesi has average annual
survival ratesi for age 1 + animals, we know that
the multispecies recruitment functions evaluated at
Nit = Ni0 should satisfy (1− si)Ni0 = β1i0FiNi0/[1 +
β
′
2i0(1− β1i0)FiNi0], i.e. predicted recruitment should

just balance natural mortality of older animals. We can
use this constraint to calculate the habitat-population
scale parameterβ

′
2i0 given by any estimate of the

survival rate parameterβ1i0, as:

β
′
2i0 = [β1i0Fi / (1− si)− 1] /

[FiNi0(1− β1i0)]. (22)

That is, given Ni0 and the sustainability assumption,
we do not have to treat at least the basic habitat size
parametersβ

′
2i0 as uncertain, and we can concentrate

attention on representation of the survival parameters
β
′
1i0. Changes in habitat sizesA can be represented by

relative variation inβ
′
2i0 from the base value given by

Equation 22.
Next, note that there are ordinarily (and, it is to

be hoped from a management perspective) no good
data upon which to directly estimateβ1i0; β1i0Fi is the
slope of the recruitment curve for very low spawning
stock, and that slope is certainly something that we do
not want to see very often if at all. But from stock–
recruitment summaries like Myers and Barrowman
(1996), we can obtain likely values measured as ratios
to the natural survival rateNi10/(FiNi0) = (1− si )/Fi .
Typically for fish, we expectβ1i0 to be on order 5–
10× this natural rate (5× to 10× improvement in
juvenile survival at very low stock sizes; Myers and
Cadigan, 1993). Letting the assumed ratio beKi (e.g.
K = 5), we then know thatβ1i0 should be calculated so
as to satisfy the constraintβ1i0 = Ki (1 − si )/Fi. This
approach amounts to reparametrizingβ1i0 so that we
can easily make it consistent with general experience
(K) and the relatively stable population characteristics
si andFi .

From the original derivation,β1i0 can be expressed
as β1i0 = exp(−λi0Ri0/Ii0), whereλi0 = Tsc∗m/(ak)
is a complex constant (for which it would be very
unusual to have direct field esimates) andRi0, Ii0 are
predation risk and food abundance indices for species
i evaluated at the baseline situationNi0. But if we use
the constraintβ1i0 = Ki (1− si )/Fi , then we know that
λ has to satisfy:

λi0 = −ln[Ki(1− si )/Fi ]Ii0 /Ri0 (23)

so we can calculate it immediately once we choose a
reasonable method for calculating and scaling the risk
ratio factorsIi0 andRi0. For simulations of changes
in habitat factors that influence the components ofλ

(Ts , c∗, m, a, andk), we can varyλit relative toλi0
(e.g. make it larger in warm years to reflect increases
in c∗, lower in years of high water turbidity to reflect
reductions in food search ratea).

Units of measurement for food availabilityIi0 and
predation riskRi0 are absorbed in the calculation of
λi0 using Equation 23, so we need be concerned about
calculating these ratios in a way that correctly repre-
sents therelativeimpact of changes in theNit on these
ratios. We cannot simply calculateR and I as sums
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over theNit that represent predators and food, without
accounting somehow for differences in measurement
units and relative impacts (predatoryNit ) and avail-
ability as food (foodNit components). Here is one
approach for scaling theRandI calculations. First, for
each significant consumption linkage of a prey species
i to a predatorj, attempt to estimate the following two
relative interaction factors:

P(f )ij = proportion of the diet of typej animals repre-
sented by typei prey, at baseline abundances
Ni0, and

P(p)ij = proportion of the total mortality of typei
juveniles that is due to predator typej, for
baseline abundance conditions.

Note that these proportions need not sum to 1.0;
having them sum to lesser values means assuming
that some other (but constant) food and predatory
impacts occur besides those represented by changes in
modelledNit andNj t . For eachi andj, next calculate

the base proportions of foodP(f )0j and predation impact

P(p)i0 not represented by the above proportions (1.0−
sums of the modelled proportions). Then in time simu-
lations and other analyses of interactions, calculate the
risk and food indicesRit andIit as:

Ijt = P (f )0j +
∑
i

P
(f )
ij Nit /Ni0 (24a)

Rit = P (p)0i +
∑
j

P
(p)
ij Njt /Nj0. (24b)

This scaling method has the property thatI and R
evaluate to 1.0 when food and predator abundances
are all atNi0. Increases and decreases inNit relative
to Ni0 result in ratio changes relative to the propor-
tionsP(f ) andP(p) initially estimated, no matter what
units of measurement are used for theN. Note that
the Ij t calculation requires a potentially questionable
assumption that all prey typesi have similar exchange
ratesk, m into and out of foraging arenas; without
this assumption, theIj t calculation would have to
account for potentially complex changes in apparent
prey densities with changes in densities of competing
predators (Nj t ), due solely to differences in suscepti-
bility of prey types to local depletion within arenas.
Further, localized interspecific competitive effects of
different species foraging in the same arenas are not
represented in theIj t calculation. For example, if the
availability of a prey item (Nit ) increases over time,

food availability (Ij t ) may not increase proportion-
ally according to Equation 24a at higher levels of
interspecific competition.

In summary, this parametrization method requires
users to specify baseline relative abundancesNi0,
survival and fecundity estimatessi , Fi , compensatory
response factors or abilitiesKi , and the diet/predation
impact proportionsP(f )ij , P(p)ij , along with any para-
meters needed to describe temporal variation in habitat
capacity/quality as reflected in the derived parameters
β
′
2it andλit . In the authors’ experience, these require-

ments can quite often be met, with the possible excep-
tion of the relative predation impact factorsP(p)ij which
depend on somehow apportioning mortality among
the predators that cause it. Time simulations proceed
by first calculating these derived parameters, then
calculating the risk ratio factors in Equation 24 and
applying them in Equation 21 withβ1it given by
exp(−λitRit /Iit ). In terms of familiar stock assess-
ment estimation methods, theNi0 can be treated as
key leading parameters for fitting multispecies time
series, just as we often treatB0 as a leading para-
meter in single species estimation. Ambitious analysts
might even try to estimate theKi , and the truly heroic
among us might even include theP(f ) and P(p) in
time series fitting procedures (until they see how badly
confounded the effects of these parameters generally
are in times series settings).

Particular care needs to be taken in defining
effective fecunditiesFi for Equation 21. These should
be measured net of any density-independent egg and
larval mortality rates that might apply before animals
become large enough to display the sort of behavioural
responses assumed in the foraging arena relationships.
Otherwise, the estimated exponential factorsλit could
be far too large and hence lead to unrealistically high
sensitivity of predicted recruitments to the risk ratios
Rit /Iit .

Discussion

The derivation above rests on two key, testable
propositions: (1) that spatially restricted foraging
creates competitive conditions that can drive juvenile
fish to alter foraging time (or dispersal) with
increasing density of competitors, and (2) that
mortality is due mainly to predation associated with
foraging (and dispersal). Similar arguments could
be applied in relation to other potentially limiting
resources such as spatial hiding places, with the
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central theme being that evolution of responses to
predation risk should involve behavioural changes
that create localized resource competition. This
leads to a worrisome point about how testable the
extended Beverton–Holt theory described above really
is. Suppose we go out and measure habitat use patterns
and measure (or experimentally impose) changes in
risk ratios Rt /It for some key life history stanzas,
and suppose we get a negative result (no recruitment
response to the measured changes inRt /It . We can
salvage the theory just by arguing that we have failed
to identify the right risk indexRt or resource indexIt ,
or that compensation is actually occurring in another
stanza. It may be impossible in practice, if not in
principle, to weed out all such alternatives.

Obviously the model offers a nice excuse for
why we have been so unsuccessful at finding clear,
persistent correlations between recruitment and envi-
ronmental factors. Direct effects of such factors can
be overridden by small, difficult-to-monitor changes
in biotic variables. For example, Spencer and Collie
(1997) found that application of a surplus production
model incorporating a nonlinear predation rate (Steele
and Henderson, 1984) to Georges Bank haddock
provided the best fit to a long-term historical data
set showing prolonged periods of high and low stock
productivity. Further, the main impact of environ-
mental factors could very well be indirect, through
effects on parameters likec∗, a, A, m, k and Rt /It ,
and it is easy to see how some of these effects could
work in opposite directions (e.g. increase in tempera-
ture may increasec∗ but also prey exchange ratek,
leading to the same value ofG0 in Equation 18). At
the very least, the derivation above implies that we
need to be much more careful about how we articu-
late hypotheses concerning effects of environmental
factors, with emphasis on describing precisely how
any factor should influence interactions at the small
space-time scales where these actually occur.

Fisheries scientists have long recognized that
growth and mortality rates are highly correlated
(Pauly, 1980), but we most often explain this correla-
tion by arguments about linkage between physiolo-
gical activity and ageing. At least for juvenile fish,
experience with aquaculture suggests that this argu-
ment is fundamentally wrong: it is generally possible
to obtain quite good survival rates just by providing
adequate food while protecting juveniles from preda-
tion, and growing little animals faster in such protected
settings does not generally lead to big increases in
natural mortality rate. Such experience supports our

basic assumption that eating and dying are positively
linked in nature not for physiological reasons, but
because small animals cannot eat without exposing
themselves to being eaten. In other words, it is not
solely the bioenergetics of growth that should interest
fisheries scientists, but rather the implications for
mortality of the time spent feeding to achieve this
growth.

So the generalized Beverton–Holt model comes
very close to being a real theory of recruitment,
representing observations and links to other ecolo-
gical theory across a wide range of time-space scales.
It even has an actual theoretical entity, the foraging
arena, and is clearly well insulated from direct experi-
mental test and invalidation. It appears able to explain
a wide variety of observations, ranging from the nearly
ubiquitous observation of recruitment being nearly
flat when plotted against egg or larval abundance
to the occurrence of high variation without obvious
environmental correlates or explanation.

Whether or not the model provides a useful general
theory for description of variation in natural popula-
tions, it could be of considerable practical value as a
relatively simple way to model alternative hypotheses
about impact of major habitat alterations in freshwater
and coastal marine environments. For instance, we are
currently developing models for population dynamics
of endangered fish species in the Grand Canyon region
of the Colorado River (Walters and Korman, unpub-
lished data). Warm-water species such as humpback
club (Gila cypha) Cyporinidae have apparently been
severely affected by a whole series of changes asso-
ciated with the Glen Canyon Dam: clear, cold water
released from the dam has created not only unfavour-
able thermal conditions for warm-water species, but
also a massive trophic gradient through the Canyon
with much higher primary and benthic insect produc-
tion in the upper reaches (Stevens et al., 1997) and
much increased abundances of exotic predatory fishes
such as trout. In this setting, the model provides a
framework for representing possible effects of various
mitigative measures (like warm water flow augmenta-
tion), on both recruitment parameters related directly
to physical habitat factors (e.g. effects of tempera-
ture or turbidity on spawning, size of rearing areas
A, predator search ratesa) and on tropic relationships
(R/I ratios over space and time). In this case, we
need to develop recruitment submodels for a variety
of species about which there is variable quality of
life history and population data, so the Beverton–Holt
relationship is computationally convenient as well as
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helpful in directing attention to key parameters that
may influence juvenile mortality rates.

The cross-scale arguments presented in this paper
should serve as warning to the growing number
of population ecologists who are trying to develop
very detailed, spatially explicit and individual-based
models for recruitment prediction and analysis of
impacts of habitat alteration (Van Winkle et al., 1993,
1997). To date, such models do not simulate processes
at the very fine space-time scales where mortality rates
are actually determined by behavioural interactions.
Trophic arenas and their competitive impacts are most
likely to be defined by habitat structures and behav-
ioural processes at scales of a few metres and minutes
to hours. While it is possible in principle to map
structure and function at such scales, fully explicit
simulations of the cumulative impact of everything
happening at these scales probably will never be prac-
tical from data acquisition or computational perspec-
tives. Further, it is not clear that there would be any
real point to such explicit modelling exercises. There
may be great value in developing spatially explicit
models to help understand the consequences of some
mesoscale processes such as juvenile dispersal on
spatial scales of hundreds of metres to kilometres. But
when we develop such models, we need to be much
more careful about how we represent processes at
scales too fine to represent explicitly; in short, it is just
not good enough to assume microscale homogeneity
in food availability and simple relationships such as
feeding rates limited by handling time or satiation.

Our derivation casts grave doubt on the conclusion
of Walters and Parma (1996) that fixed exploitation
rate strategies may be a good way to cope with long-
term regime shifts in recruitment. That conclusion
was based on the proposition that theβ1 parameter
(proportional to recruitment curve slope near origin)
may often be relatively stable, while the recruitment
carrying capacityβ1/β2 parameter may be more sensi-
tive to environmental changes (i.e. stable reproductive
performance at very low stock sizes but long-term
variation in competitive outcomes at higher stock
sizes). Stableβ1 implies stable optimum exploita-
tion rate (optimum rate calculations generally do not
depend onβ2). Our assumption of stableβ1 may
have been only wishful thinking; if changes inβ1
are in fact driven substantially by long-term changes
in predation and competitive regimes as measured by
R/I ratios, mediated by changes in habitat variables as
well, fishing mortality rate goals should be adjusted
to such changes. That is a very difficult assessment

problem: we generally cannot measureβ1 directly, and
how can we decide when we see a change in recruit-
ment whetherβ1 has changed, or instead the carrying
capacityβ1/β2? Perhaps it is time to start looking very
hard for field methods to monitor long-term changes
in juvenile mortality rates (β1) directly, and for regu-
latory options that are robust to unpredictable changes
in β1.

In some ways the most important result in this
paper is buried in Appendix 1, where we hint at just
what a wide range of different behavioural ecolo-
gies can give rise to the Beverton–Holt relationship.
In view of this generality, it is hard not to shout in
outrage when we see flat-topped recruitment relation-
ships interpreted mindlessly and wrongly as indicative
of recruitment limitation by environmental factors.
Such interpretations fail not only to recognize what the
word ‘limitation’ means in the first place; worse, they
direct research attention away from the fascinating
world of ecological interactions where recruitment
limitation actually occurs.
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Appendix 1. Why a Beverton–Holt relationship
may occur even if foraging time is fixed and time
spent in a juvenile stanza varies with density of
competitors

At the heart of the derivation above is the presump-
tion that food consumption ratec is proportional to
available food densityft , which in turn depends on
local competitive conditions such thatc = apkIt / (m +
(a/A)Nt ). Suppose we assume thatp is fixed at some
daily time proportionp0; we then replace mortality
Equation 7 with the simpler exponential model

dN/dt = −Rtp0Nt (A1)
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which implies that density declines over time within a
stanza as

Nt = N0e
−Zt (A2)

whereZ = Rtp0.
But now assume that graduation from a juvenile

stanza occurs at timeT when juveniles have achieved
total food consumptionC∗, where C∗ accumulates
according to

C∗ =
∫ t=T

t=0
cdt

= Itkap0

∫ t=T

t=0
dt / [m+ (a/A)N0e

−Zt ]. (A3)

This is just the integral of the arena-scale time model
for variation in food consumption ratec with changes
in competitor densityNt , whereNt is predicted from
Equation A2. Integrating Equation A3 to obtain an
analytical expression forC∗ results in:

C∗ = (Itka/Rtm){ln[m+ (a/A)N0e
−ZT ] (A4)

+ZT − ln[m+ (a/A)N0]}.
Then solving this relationship betweenC∗ andT, for
the total timeT required to achieveC∗, we obtain:

T = (1/Z)ln[{exp[C∗Rtm/It ka +
ln(m+ (a/A)N0)] − (a/A)N0} /m]. (A5)

Substituting this prediction ofT into Equation A2
and rearranging the terms into familiar Beverton–Holt
equation format results finally in:

NT = exp(−C∗Rtm / Itka)N0 /

{1+ (a/mA)[(1−
exp(−C∗Rtm / Itka)]N0}. (A6)

It should be noted that this equation should not be
applied (as a single stanza predictor of survival) for
contexts whereT can be large enough for the risk
ratio Rt /It to change substantially overt, owing either
to juvenile growth (decliningRt due to larger body
size) or to changes in predator and food abundances.
However, the fact that it may need to be calculated for
a number of short stanzas does not invalidate the basic
prediction that overall recruitment relationship should
be Beverton–Holt in form except when older juveniles
and parents are a large component ofRt .
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